Argonne°

NATIONAL LABORATORY

Casper

An Asynchronous Progress Model for MPI RMA on Many-Core Architectures

Min Si
Guest graduate student at Argonne National Laboratory, IL, USA

Mentor : Antonio J. Pefia Supervisor : Pavan Balaji

PhD student at University of Tokyo, Tokyo, Japan

Advisor : Yutaka Ishikawa

Download slides: http://sudalab.is.s.u-tokyo.ac.jp/~msi/pdf/casper-seminar-20150423.pdf
& THE UNIVERSITY OF TOKYO

$T%, U.S. DEPARTMENT OF
.4/ ENERGY

A

Irregular Computations

. Regular computations - Irregular computations
— Organized around dense vectors or — Organized around graphs, sparse
matrices vectors, more “data driven” in
— Regular data movement pattern, nature
use MPI SEND/RECV or collectives — Data movement pattern is
— More local computation, less data irregular and data-dependent
movement — Growth rate of data movement
— Example: stencil computation, is much faster than computation
matrix multiplication, FFT* — Example: social network analysis,
bioinformatics
— B - X - L J— A,—"__'\\
ot J0u b_‘ ij " +° 9N ewas 2o i\l ' 155, @
L - < " Increasing trend of applications are moving to .
| al®) XN 0 irregular computation models
A A VA ! .
‘ >0 % Need more dynamic communication model
— = — X7XN3 2 W PR B o) J
* FFT : Fast Fourier Transform |
Min Si * The primary contents of this slide are contributed by Xin Zhao. 2
o 2015-04-23

Argonne National Laboratory, The University of Tokyo

b

Message Passing Models

= Two-sided communication

Process O Process 1

Sen a) —

(data)

ata)

ataje—— S

Feature:

One-sided communication
(Remote Memory Access)

Process O Process 1

Pu a) —

G

— Computation
"=

a) —— 13

Origin (PO) specifies all communication parameters
Target (P1) does not explicitly receive or process

message

Is communication always asynchronous ?

Min Si

Argonne National Laboratory, The University of Tokyo

2015-04-23

Problems in Asynchronous Progress

= One-sided operations are not truly one-sided
— In most platforms (e.g., InfiniBand, Cray)

e Some operations are hardware supported (e.g., contiguous PUT/
GET)

e Other operations have to be done in software (e.g., 3D
accumulates of double precision data)

Process O Process 1

Software implementation of one-sided
operations means that the target process

Computation has to make an MPI call to make progress.
|
MPiicall Not TRULY asynchronous !
a Min Si * RDMA : Remote Direct Memory Access 4
Argonne National Laboratory, The University of Tokyo 2015-04-23

Traditional Approach of ASYNC Progress (1)

= Thread-based approach

— Every MPI process has a communication dedicated background
thread

— Background thread polls MPI progress in order to handle incoming
messages for this process

— Example: MPICH default asynchronous thread, SWAP-bioinformatics
Cons:

X Waste half of computing cores or oversubscribe cores

X Overhead of Multithreading safety of MPI

Process 0 Process1 Helper
thread
ompu*atlon
/_’ :
_— - 1
- :
|
: -
|
Min Si 5

S 2015-04-23

Argonne National Laboratory, The University of Tokyo

Traditional Approach of ASYNC Progress (2)

= [nterrupt-based approach

— Assume all hardware resources are busy with user computation on
target processes

— Utilize hardware interrupts to awaken a kernel thread and process the
incoming RMA messages

— i.e., DMMAP based Cray MPI, IBM MPI on Blue Gene/P

Cons:
X Overhead of frequent interrupts

=

Execution Time on Rank 0(ms)
O FRLP N WA ULIONOOOO
Ny
\\

:

100000

90000

80000 I I

;gggg o 1 Computation
Q.

50000 g Ac

40000 £

30000

20000

10000

0

System Interrupts Process O Process 1
e=0m»Original MPI

=

o

Helper
1 4 16 64 256 1024

+= thread
In‘terkrypt —> !
od -—— - 1
- '
Number of Operations
DMMAP-based ASYNC overhead on Cray XC30

Min Si 6
2015-04-23

b

Argonne National Laboratory, The University of Tokyo

Casper Process-based ASYNC Progress

= Multi- and many-core architectures v v E

— Rapidly growing number of cores i i i i}

— Not all of the cores are always keeping busy

= Process-based asynchronous progress
— Dedicating arbitrary number of cores to “ghost processes”

— Ghost process intercepts all RMA operations to the user processes
Pros:

v" No overhead caused by multithreading safety or frequent interrupts
v" Flexible core deployment Process 0 Process 1 Ghost

v' Portable PMPI" redirection ! ! PI’OEESS

Process 0 Process 1 A Computation
+=
I putaﬂon €---1RT
i
1<_ - -Mﬁu j\> I

Original communication Communication with Casper

Min Si * PMPI : name-shifted profiling interface of MPI 7
2015-04-23

Argonne National Laboratory, The University of Tokyo

Basic Design of Casper

= Three primary functionalities

1. Transparently replace MPI_COMM_WORLD by
COMM_USER_WORLD

MPI_COMM_WORLD

B —
2. Shared memory mapping between local user "o 1 2 |

and ghost processes by using MPI-3 COMM_USER_WORLD
MPI_Win_allocate_shared*

3. Redirect RMA operations to ghost processes

Internal Memory mapping PO P1 Ghost Process
Ghost for P1
Process i & Lock(P1) | : '
P1 offset $ i I : Recv
P2 offset ~ | ACC(P1, disp, user_win) : ;
’ ’ _‘ : Computation

ACC(GO, P1_offset + disp, += N
internal_win)i
1

I I
* MPI_WIN_ALLOCATE_SHARED : Allocates window that is shared among all processes in
the window’s group, usually specified with MPI_COMM_TYPE_SHARED communicator.

Min Si 8
2015-04-23

I
I
I
I
I
I :A /
I
I
I
I

b

Argonne National Laboratory, The University of Tokyo

Outline

" Ensuring Correctness and Performance

= Evaluation
= Asynchronous Progress Runtime Adaptation

= Next Steps

[1] M. Si, A. J. Pena, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa, “Casper: An
asynchronous progress model for MPI RMA on many-core architectures,” in Parallel and
Distributed Processing (IPDPS), 2015.

[2] M. Si, A. J. Pena, J. Hammond, P. Balaji, and Y. Ishikawa. Scaling NWChem with Efficient and
Portable Asynchronous Communication in MPI RMA. In Cluster, Cloud and Grid Computing
(CCGrid), 2015 15th IEEE/ACM International Symposium, 2015. (Accepted)

Min Si 9
Argonne National Laboratory, The University of Tokyo 2015-04-23

Argonne°

NATIONAL LABORATORY

Ensuring Correctness and Performance

Correctness challenges

1. Lock Permission Management

2. Self Lock Consistency

3. Managing Multiple Ghost Processes
4. Multiple Simultaneous Epochs
Performance challenge

1. Memory Locality

Ensuring Correctness and Performance | Evaluation | Asynchronous Progress Runtime Adaptation | Next Steps

RMA synchronization modes

= Active-target mode = Passive-target mode
— Both origin and target issue — Only origin issues synchronization
synchronization
— Fence (like a global barrier) — Lock_all (shared)
Fence(win)¥ ¥ *Fence(win) Lock_all(win) %]]
| | |
‘PUT: pUTE<E PUT :3: I |
Fence(win) & & & Fence(win) Unlock_all(win) —‘ : ":
— PSCW (subgroup of Fence) — Lock (shared or exclusive)
| POSt(PO &P2, win) lock(Pl) #—0V 1 1,
Start(P1, win) ,/.I\‘Start(Pl, win) Ut : Lock(P1)
I\I

PUT .
|

PUT 1
. \ : . Unlock(P1) |.\|
Comp(P1, win) ’\./,Comp(Pl, win) | I/I PUT
. A ; ' ' Unlock(P1)
Wait(PO & P2, win) ! X

Min Si 11

Argonne National Laboratory, The University of Tokyo

2015-04-23

b

[Correctness Challenge 1]
Lock Permission Management for Shared Ghost Processes (1)

1. Two origins access two targets sharing the same ghost process

[POOR PERF.] Two concurrent lock epochs have to be serialized

P2

Lock (PO, win)

Unlock(PO, win)

P3

Lock (P1, win)

Unlock(P1, win)

»

P2

Lock (GO, win)

Unlock(GO, win)

P3

Serialized

Lock (GO, win)

Unlock(GO, win)

2. An origin accesses two targets sharing the same ghost process
[INCORRECT] Nested locks to the same target

Lock (PO, win)
Lock (P1, win)

Unlock(PO, win)
Unlock(P1, win)

Min Si

»

Lock (GO, win)
Lock (GO, win)

Argonne National Laboratory, The University of Tokyo

MPI standard:

an origin cannot nest locks to the same target

2015-04-23

12

.
[Correctness Challenge 1]
Lock Permission Management for Shared Ghost Processes (2)

= Solution

— N Windows
* N = max number of processes on every node

e COMM. to iy, user process on each node goes to iy, window

WINI[O] WIN[1]
0 1 2 0 1 2
3 G1
g;. -ii— gé

= User hint optimization
— Window info “epochs_used” (fence|pscw |lock]|lockall by default)
e |f “epochs_used” contains “lock”, create N windows

e Otherwise, only create a single window

Min Si 13

S 2015-04-23

Argonne National Laboratory, The University of Tokyo

[Correctness Challenge 2] Self Lock Consistency (1)

PO
, MPI standard:
Lock (PO, win) Local lock must be acquired immediately
x=1
y=2
‘ Lock (GO, win) MPI standard:
Unlock(PO, win) xRemote lock may be delayed..
Unlock(GO, win)

Min Si 14

2015-04-23

° Argonne National Laboratory, The University of Tokyo

[Correctness Challenge 2] Self Lock Consistency (2)

= Solution (2 steps)
1. Force-lock with HIDDEN BYTES™

Lock (GO, win)
Get (GO, win)
Flush (GO, win) | // Lock is acquired

2. Lock self

Lock (PO, win) // memory barri_er for managing
// memory consistency

= User hint optimization
— Window info no_local_loadstore

e Do not need both 2 steps

— Epoch assert MPI_MODE_NOCHECK
* Only need the 2_, step

* MPI standard defines unnecessary restriction on concurrent GET and accumulate.

Min Si See MPI Standard Version 3.0, page page 456, line 39. 15

S 2015-04-23

Argonne National Laboratory, The University of Tokyo

[Correctness Challenge 3]
Managing Multiple Ghost Processes (1)

1. Lock permission among multiple ghost processes

[INCORRECT] Two EXCLUSIVE locks to the same target may be concurrently acquired

P2

Lock (EXCLUSIVE, PO, win)
PUT(PO)
Unlock(PO, win)

Serialized

S |

Lock (EXCLUSIVE, PO, win)
PUT(PO)
Unlock(PO, win)

P3 ',

Lock (EXCLUSIVE, GO, win)
Lock (EXCLUSIVE, G1, win)

// get GO
G = randomly_pick_ghost();

PUT(G)

Lock (EXCLUSIVE, GO, win)
Lock (EXCLUSIVE, G1, win)

// get G1
G = randomly_pick_ghost();
PUT(G)

Min Si

o Argonne National Laboratory, The University of Tokyo

2015-04-23

x Empty lock can be ignored,

P2 and P3 may concurrently
acquire lock on G0 and G1

16

(correct result is 2)

ACC (x, +1, P1)
ACC (x, +2, P1)

b

[Correctness Challenge 3]
Managing Multiple Ghost Processes (2)

2. Ordering and Atomicity constraints for Accumulate operations

[INCORRECT] Ordering and Atomicity cannot be maintained by MPI among multiple
ghost processes

GET_ACC,
(x,y, +1, Pl):
1

ACC1

(x, +2, P1) 1

U MPI standard:
VT Same origin && same target location

y=4 accumulates must be ordered

1
1
1
|
|
|
|
|
\,\ g _:4 x MPI standard:
read = read x = 4 Concurrent accumulates to the same

Xx=4+2 target location must be atomic per
basic datatype element.

Min Si 17
2015-04-23

Argonne National Laboratory, The University of Tokyo

[Correctness Challenge 3]
Managing Multiple Ghost Processes (3)

= Solution (2 phases)

1. Static-Binding Phase
e Rank binding model
— Each user process binds to a single ghost process
e Segment binding model

— Segment total exposed memory on each node
into N chunks

— Each chunk binds to a single ghost process

e Only redirect RMA operations to the bound ghost
process

e Fixed lock and ACC ordering & atomicity issues

e But only suitable for balanced communication
patterns

Min Si
Argonne National Laboratory, The University of Tokyo 2015-04-23

PO P1

P2 P3

Static-rank-binding

d B

PO 1 P3

Static-segment-binding

18

[Correctness Challenge 3]
Managing Multiple Ghost Processes (4)

1. Static-Binding Phase

< Optimization for dynamic communication patterns

2. Static-Binding-Free Phase

— After operation + flush issued, “main lock” is acquired

— Dynamically select target ghost process P1 mm
T
— Accumulate operations can not be “binding free” Lock(GO, G1) ! ! !
PUT(GO) : : :
Flush(GO0) I I I
Acquired main lock (GO) : ¥_ :
Pickupa G B'- dine F) :
PUT(P1,x) —> PUT(G1, x) Inding Free |
1 | 1
I —
Unlock(GO, G1)
Min Si 19

b

Argonne National Laboratory, The University of Tokyo 2015-04-23

N |
[Correctness Challenge 4]

Multiple Simultaneous Epochs — Active Epochs (1)

= Simultaneous fence epochs on disjoint sets of processes sharing the
same ghost processes

[INCORRECT] Deadlock !

Fence(win0)! '

i *
Epoch 1 :I ' !
Fence(win0)1 B 4]
¢

K

|
1
1
1
- Fence(winl)
: Epoch 2

‘— Fence(winl)

v GO G1
| |
|

»———
Blocked ! -

Waiting for lFence(win|1) to ﬁniSI
I
I
|

| | :

| | | |

! ! x DEADLOCK !
Min Si

Argonne National Laboratory, The University of Tokyo 2015-04-23

Fence(winl)

Blocked
Waiting for Fence(win0) to finish

20

b

[Correctness Challenge 4]
Multiple Simultaneous Epochs - Active Epochs (2)

= Solution

— Every user window has an internal “global window”

— Translate to passive-target mode
Performed on user processes

— Fence
Win_allocate Win_allocate
Lock_all (global win)
Fence(win0) Flush_all (global win) + Barrier(COMM _USER_WORLD) + Win_sync
PUT(P) PUT(G)
Fence(win) Flush_all (global win) + Barrier(COMM_USER_WORLD) + Win_sync
[Performance issue 1] [Performance issue 3]
User hint 4)
MP'_MODE_NOPRECEDE [Performance Issue 2]
avoids it User hint (NOSTORE & NOPUT &
NOPRECEDE) avoids it
Win_free Unlock_all (global win)
Win_free

— PSCW =) Flush + Send-Receive

Min Si 21

Argonne National Laboratory, The University of Tokyo

S 2015-04-23

\]
[Correctness Challenge 4]
Multiple Simultaneous Epochs — Lock_all (1)

= Lock_all only

— Same translation as that for Fence

e lock_all in win_allocate, flush_all in unlock_all

[INCORRECT] Lock_all and EXCLUSIVE lock on the same window may be concurrently
acquired

P2

PUT(PO)
Unlock_all(win)

Lock_all (win) -

P3
Serialized Lock (EXCLUSIVE, PO, win)
PUT(PO)
‘ Unlock(PO, win)
P2 I P3
Lock_all (global win) | ' Lock (EXCLUSIVE, GO, win[0])
PUT(GO) .| PUT(GO) x Locks may be acquired
Unlock_all(global wm) concurrently
Min Si 22

S 2015-04-23

Argonne National Laboratory, The University of Tokyo

\
[Correctness Challenge 3]
Multiple Simultaneous Epochs — Lock_all (2)
= Solution

— Translate lock_all to a series of locks to all ghost processes

P2 P2
Lock_all (win) Lock (SHARED, GO, win[0]) // lock PO ﬁ
‘ Lock (SHARED, GO, win[1]) //lock P1

Lock (SHARED, G1, win[0]) // lock P2
Lock (SHARED, G1, win[1]) // lock P3

Min Si 23

S 2015-04-23

Argonne National Laboratory, The University of Tokyo

[Performance Challenge] Memory Locality

= Casper internally detects the location of the user processes
= Only bind the closest ghost processes
= j.e., PO-2 are bound to GO, P3-5 are bound to G1

Node Node
Socket 0 Socket 1 Socket 0 Socket 1
P2R@P3 o POl G1 PlgP2 PAgPS
Memory Memory Memory Memory
Min Si 24

S 2015-04-23

Argonne National Laboratory, The University of Tokyo

Argonne°

NATIONAL LABORATORY

Evaluation

Asynchronous Progress Microbenchmark

NWChem Quantum Chemistry Application

& %, U.S. DEPARTMENT OF

'ENERGY?2°

Ensuring Correctness and Performance | Evaluation | Asynchronous Progress Runtime Adaptation | Next Steps

Experimental Resources

= Experiment platform
1. NERSC Edison Cray XC30"

e 24 cores per node

* Cray MPIv6.3.1 RMA implementation

HW-handled OP SW-handed OP ASYNC. mode
Original mode NONE All Thread
DMAPP mode Contig. PUT/GET Noncontig OP, ACC Interrupt

2. Fusion cluster

e 8 cores per node

e MVAPICH v2.0rcl1 RMA implementation

HW-handled OP SW-handed OP ASYNC. mode
Contig. PUT/GET Noncontig OP, ACC Thread

* https://www.nersc.gov/users/computational-systems/edison/configuration/
Min Si 26
Argonne National Laboratory, The University of Tokyo 2015-04-23

b

Evaluation 1. Asynchronous Progress Microbenchmark

Accumulate on Fusion (SW)

Test scenario
25 — 2.29 .
— =¢=Original MPI Vs Lock_all (win);
QL 2 e A .
g «=Thread-based async / for (I=O,‘ I<KNProc, I++) {
= L5 «/w=Casper OP(i, double, cnt = 1);
g 1 Flush(i);
[} .
205 busy wait 100us;
o } |
2 4 8 16 32 64 128 256 Unlock_all (win)
Number of Application Processes (ppn=1)
Accumulate on Cray XC30 (SW) PUT on Cray XC30 (HW in DMAPP mode)
60 53.16- 18 172.04
e===Qriginal MPI e=G==Qriginal MPI
» 50 @ 15
£ =@=Thread-based async £ - e@=Thread-based async /1n 24
40 o
_Q§J @=y= DMAPP (Interrupt-based async) § == DMAPP (HW PUT)
= 30 ?
o e==Casper 17.22 7 e==Casper 7.07
© 20 T 6
S S
< 10 < 3
0 - . 0 -
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256
Number of Application Processes (ppn=1) Number of Application Processes (ppn=1)
Casper provides asynchronous progress for Casper performs the same performance as
SW-handled operations. that of HW operations
Min Si 27

b

Argonne National Laboratory, The University of Tokyo 2015-04-23

Evaluation 2. NWChem Quantum Chemistry Application (1)

= Computational chemistry application suite
composed of many types of simulation capabilities.

= ARMCI-MPI (Portable implementation of Global
Arrays over MPI RMA)

= Focus on most common used CC (coupled-cluster)
simulations

(1) CCSD method (2) CCSD(T) method

Self-consistent field (SCF) Self-consistent field (SCF)
Four-index transformation (4-index) } COMM:-intensive Four-index transformation (4-index)

CCSD iteration CCSD iteration

COMM-sparse —> (T) portion

Min Si 28

S 2015-04-23

Argonne National Laboratory, The University of Tokyo

Evaluation 2. NWChem Quantum Chemistry Application (2)

= Typical computation-communication pattern

— Get-Compute-Update

-

x —
\ GET GET Accumulate
lock a block b block ¢
® . =

Perform DGEMM in local buffer

Min Si
s

Argonne National Laboratory, The University of Tokyo

2015-04-23

foriin | blocks:
forjinJ blocks:
for k in K blocks:
GET block a from A
GET block b from B
c+=a*b | Heavy

end do computation
ACC blockcto C
end do
end do

29

Evaluation 2. NWChem Quantum Chemistry Application (3)

= CCSD for water molecule on Cray XC30

CCSD for varying Wn with pVDZ
i Original MPI M Casper B Thread (O) W Thread (D)

250 300
250
< 200 a
E £200
) :15() (]
= E£150
(= =
100
Q %100
(@] (C
O 50 - = 50
0 - 0

W10
120

w14
384

W16
600

W18
936

W20dode
1416

w21
1704

Problem Size / Number of Cores

Casper provides consistent

improvement.
Min Si

Argonne National Laboratory, The University of Tokyo

2015-04-23

Original MPI 24 0
Casper 20 4
Thread (O)

(with oversubscribed cores) L 28
Thread (D) 12 12

(with dedicated cores)

CCSD for W21=(H,0),, with pVDZ
M Original MPI M Casper B Thread(O) ™ Thread(D)

1704

3072 6144
Number of Cores

The improvement of Casper becomes

less with increasing number of cores ?
30

12288

Evaluation 2. NWChem Quantum Chemistry Application (4)

Get-compute-update in CCSD iteration.

= CCSD prOﬁ li ng - for each sub block in A, B do
GET a from A;

GET b from B;
DGEMM c=axb+c;
ACCUMULATE c to C;

Global Arrays: A, B, C;
Local Buffers : p, b, c;

Task internal steps in varying Wn with pvVDZ NXTASK;
done
B SCF B 4-Index E CCsD
100% T B == o _
20% B * The cost of DGEMM is increasing;
¢ ’ * The cost of RMA is reducing;
o,
5 60% * Nxtask takes half of the entire cost.
I._‘s 40% CCSD steps in W21-pVDZ with 1704 cores
20% M Nxtask MDGEMM MRMA M Sort
0% T T . 250
c
1704 3072 6144 12288 e 200
Number of Cores A 102.1
@ 150
The CCSD iteration consistently dominates P 100
_ 0 £
the entire cost of CCSD by close to 90%. g 57 & 7.
™
2.1 225
0 22 152 | 23.0 E =
Original Casper Casper Casper Thread Thread
0 Mvtinssi MPI (1) (4) (8) (0) (D) 44
& 2015-04-23

Argonne National Laboratory, The University of Tokyo

Evaluation 2. NWChem Quantum Chemistry Application (5)
= CCSD(T) for water molecule on Cray XC30.

Original MPI 24 0
Casper 20 4
Thread (O)

(with oversubscribed cores) L el
Thread (D) 12 12

(with dedicated cores)

CCSD(T) for varying Wn with pvVDZ CCSD(T) for W21=(H,0),, with pVDZ
i Original MPI M Casper B Thread(O) ™ Thread(D) M Original MPI M Casper B Thread(O) ™ Thread(D)
25 25
-
—20 = —20
< <
@ 15
£ g
= =
5 10 £ 10
© ©
5 = 5
0 0
W5 W10 W14 W16 W18 W20dode W21
24 120 384 600 936 1416 1704 1704 3072 6144 12288
ald Number of Cores Number of Cores
~ Minsi 32

\ - -
. Argonne National Laboratory, The University of Tokyo 2015-04-23

-
Evaluation 2. NWChem Quantum Chemistry Application (6)

" CCSD(T) prOﬁ I INg ~ T portion in W21 —pVDZ with 1704 cores
B DGEMM ERMA E Sort

— 18
=§— 15
212
S 9

The (T) portion consistently dominates the Z°
£,

entire cost by close to 80%. E g

. . . . Original Cas'per Cas-per Cas.per Thr.ead Thr.ead
Task internal steps in varying Wn with pVDZ MPI (1) (4 (8 (0) (D)

M 4-index MCCSD M (T) portion M QOthers T portion in W21 —pVDZ with

100% - varying number of cores
80% B DGEMM ERMA E Sort
60% "
40%
20% ' i
6 B2 Wk
B S E— T T T 1 : :

0% : : :
W5 W10 W14 W16 W18 W20 W21 B 1704 3072 6144 12288|1704 3072 6144 122%

Number of Cores

[
oN MO

Time

Time in (T) portion (hr)

oN P O

 Minsi 33

° Argonne National Laboratory, The University of Tokyo

2015-04-23

Evaluation 2. NWChem Quantum Chemistry Application (7)

= CCSD iteration and (T) portion in CCSD(T) task

CCSD and (T) portion in W,,-pVDZ with 1704 cores

M CCSD i (T) portion
Profiling for CCSD iteration in CCSD(T) task 25 1E
B Nxtask BWDGEMM HERMA ESort 20 ——;TS—B-ES‘t—p-e-rfo-nE-a-n-c-eL -
/ T, M 65 a5 [- B B
_ ()
£ E 10 NN |- —
- 4 =
E 37 5 '
b I Bl
1 - 0 T T T T T T
0 R Original Casper Casper [asper |Casper Thread Thread
P M @@ ® (D) MPI (1) (2) (4) (8) (0) (D)
<€ >
With less number of ASYNC cores With more number of ASYNC cores
* CCSD gets worse perf because too many * Overhead in CCSD(T) increases because
RMA operations are handled by only a few of loss of computation cores
ASYNC cores.
We have to do a trade off in order to deliver the best performance for the entire task...
a Min Si 34
Argonne National Laboratory, The University of Tokyo 2015-04-23

Argonne°

NATIONAL LABORATORY

Asynchronous Progress Runtime Adaptation
[Ongoing]

Per-window Asynchronous State Management

Communication Frequency Monitor

Ensuring Correctness and Performance | Evaluation | Asynchronous Progress Runtime Adaptation | Next Steps

Asynchronous Progress Runtime Adaptation (1)

= Motivation
— Applications always consist of multiple computation phases with
different communication characteristics ...
e COMM-Intensive Phase (i.e., CCSD iteration)
— May not need asynchronous progress

— Insufficient asynchronous cores may cause communication
degradation

e COMM-Sparse Phase (i.e., (T) portion)
— Need asynchronous progress

— Overuse of asynchronous cores may cause computation
degradation

— Can we dynamically change asynchronous progress configuration for
different phases ?

Min Si 36

S 2015-04-23

Argonne National Laboratory, The University of Tokyo

Asynchronous Progress Runtime Adaptation (2)

= Can we transform cores between ASYNC and computing
modes ?
— No, because user has to change the data partitioning

= Can we just add or remove ASYNC processes ?

— Yes, but may cause significant performance degradation due to core
oversubscription

(2) COMM-Intensive
(1) COMM-Sparse

m———

(3) COMM-Sparse

N

Min Si 37

S 2015-04-23

Argonne National Laboratory, The University of Tokyo

Asynchronous Progress Runtime Adaptation (3)

= Can we simply turn on /off asynchronous progress ?

— Yes ! And no oversubscription overhead.

(1) COMM-Sparse (2) COMM-Intensive (3) COMM-Sparse

= Per-window Asynchronous State Management

COMM-Sparse PIO Pll Plz P|3 User static configuration:
* Pass async_config info [ON / OFF]

phase starts [WIN_ALLOCATE async = ON]

- - - - for every window at win_allocate.
Asynchronous .
* No correctness concern since the

WIN FREE rogress enabled]] i)
/ = . configuration is consistent through
the entire window.

Pl

COMM-Intensive__
phase starts [WIN_ALLOCATE async = OFF]

- Asynéhronbus
v _WIN_FREE progress disabled
T .

2015-04-23

Min Si

6 Argonne National Laboratory, The University of Tokyo

Y

Asynchronous Progress Runtime Adaptation (4)

= Automatic Adaptation CommT. —CommT
. . Freq(l_n) — l‘n tn—l
— Communication Frequency t—t

e Determines how frequently the communication is performed on the
local process.

e If my frequency is high, | don’t need asynchronous progress.

— Communication Frequency Monitor

(me.async \

N e e me.freq > HIGH_FREQ
| |
MPI communication 1 — ON]
I{ me.freq++ freq++ t OFF
|
’]\ [Computation] me.freq < LOW_FREQ
| \)
| WIN_ALLOCATE
N .
me.async = OFF OFF|| ON || ON Current Status:

The frequency judgment is not accurate
and stable, how to improve it ?

exchange async config

Min Si 39
2015-04-23

Argonne National Laboratory, The University of Tokyo

Argonne°

NATIONAL LABORATORY

Next Steps

PVAS-based Casper
ULP-based Casper

$T%, U.S. DEPARTMENT OF

ENERGY*’

Ensuring Correctness and Performance | Evaluation | Asynchronous Progress Runtime Adaptation | Next Steps

b

Restrictions in Current Casper

= Limited communication mode

— Require remote memory accessing from the ghost process to user

buffers

— Only support asynchronous progress on the target side in MPI RMA

= Workaround of MPI Blocking calls

— Translate Fence / PSCW
to passive target mode

— Additional overhead

Min Si

Argonne National Laboratory, The University of Tokyo

1200
1000
800
600
400

Time on Rank 0 (us)

200
0

2015-04-23

Il Fence overhead

Il PSCW overhead
#=Qriginal Fence
=#=Qriginal PSCW
————— =dr=Casper Fence
=>e=Casper PSCW

S R R SN R, VRS S S S
AR G0,

VoA
QY '\9’\/
Number of Operations "

Next Steps (1) : Supporting All Communication Modes

. . e
= Partitioned Virtual Address Spacell] PVAS space _ -
Process 0 _HEAP__|
— Proposed by RIKEN, JAPAN N
. Process 1 ~
— An OS process is able to fully access the
Process 2 — Fully accessable

memory address space on any other OS

processes inside the same PVAS space.

= PVAS-based Casper

— Ghost process is able to fully access

Two-sided with asynchronous progress

: Ghost process 0 Process 1 Pfg:;;
user processes in the same PVAS space Progess :

1 1
|
— Support asynchronous progress for all send (sb :) I

. fecei ¢
communication modes eﬂirbu 0)

e e e Compute B Compute B
e Origin side in RMA L _ . g
| | |
| | |

e Two-sided / collective
communication.

[1] A. Shimada, B. Gerofi, A. Hori, and Y. Ishikawa. Proposing a new task model towards
many-core architecture. In Proceedings of the First International Workshop on Many-

Min Si core.Embedded Systems (MES '13). ACM, New York, NY, USA, 45-48. 42
2015-04-23

Argonne National Laboratory, The University of Tokyo

N |
Next Steps (2) : Supporting Simultaneous Blocking Calls

= User Level Process!? PVAS space o
-7 TEXT
_ : 7 DATA & BSS
Multiple ULPs on each core, but only ULPO T —
one of them is running S o

ULP1 ULP4 | "~
ULP2 ULP5

— Private HEAP & STACK
e No multithreading

— User controllable scheduling D D
e Yield / Switch

= ULP-based Casper

— Multiple “Ghost ULPs” running on one

e Priority setting

uo

or a few dedicated cores

Yield

— Natively support simultaneous

blocking in blocking calls (i.e. Fence)

MPI progress

[2] A. Shimada, A. Hori, Y. Ishikawa, and P. Balaji. User-Level Process

towards Exascale Systems. IPSJ SIG Technical Report, 2014.
Min Si 43

Argonne National Laboratory, The University of Tokyo

S 2015-04-23

Supporting Simultaneous Blocking Functions in ULP-based Casper

Simultaneous fence epochs on disjoint sets of processes sharing the
same ghost processes

[INCORRECT] Deadlock !

: Blocked

4
¢
x DEADLOCK !

With Original Casper
G1
Fence(wLR) | | Fence(win . Blocked
; . ! ! IFence(wml)

| |

~ .
:
|
|

Epoch 1; .i : .I_ Fence(winl) :
Fence(win : '
! E ? E IEpoch 2 ‘:
I O i :

®— rence(winl) |

|

With ULP-based Casper

Yield

Fence(winO

S—

:
1 Fence(winl)

Yield

—d

Min Si

44
Argonne National Laboratory, The University of Tokyo 2015-04-23

b

Summary

= MPI RMA communication is not truly one-sided

— Still need asynchronous progress

— Additional overhead in thread / interrupt-based approaches
= Multi- / Many-Core architectures

— Number of cores is growing rapidly, some cores are not always busy

= Casper: a process-based asynchronous progress model
— Dedicating arbitrary number of cores to ghost processes
— Mapping window regions from user processes to ghost processes
— Redirecting all RMA SYNC. & operations to ghost processes

— Linking to various MPI implementation through PMPI transparent
redirection

Download slides: http://sudalab.is.s.u-tokyo.ac.jp/~msi/pdf/casper-seminar-20150423.pdf

Min Si 45
s 2015-04-23

Argonne National Laboratory, The University of Tokyo

